부분공간

    2. 부분공간(Subspace)

    ✏️ subspace 벡터공간 V의 부분집합 W를 생각하자. W가 V상에서 정의된 덧셉과 스칼라곱에 대해 그 자체로 벡터공간이 된다면 이때 W를 V의 Subspace라고 한다. 모든 벡터공간 V에 대하여 V와 {0}은 부분공간이다. 특히 {0}은 'zero subspace'라고 한다. W가 V의 부분공간이기 위한 필요충분조건은 다음 세가지 조건을 만족하는 것이다. (1) 0 ∈ W (2) 모든 x ∈ W, y ∈ W에 대해서 x+y ∈ W 이다. (덧셈에 대하여 닫혀있다. closed under addition) (3) 모든 c ∈ F와 모든 x ∈ W에 대하여 cx∈ W이다. (스칼라 곱에 대해 닫혀있다. closed under scalar multiplication) ✏️ Example 명제의 참과 ..