728x90
반응형
문제출처
광주과학기술원 GIST 최정옥 교수님의 “그래프 이론” 수업, 2024년 가을학기 중 Homework 6
Solution
아래 풀이는 일반화된 풀이라기엔 부족한 감이 있다. 필자는 연결그래프만을 상상했기에 이런 풀이를 작성했으나, n=16, n=18 케이스에 K4를 추가해가는식으로 그래프를 구성하면 일반화된 풀이를 구성할 수 있다.
- The above figure shows a 3-regular graph (( n = 16 )) having no 1-factor, as demonstrated in Problem 5 using Tutte's theorem.
- Using the same definitions of ( v^* ) and ( G_i ) from Problem 5, let the subgraphs on the far left, center, and far right in each graph be ( G_1 ), ( G_2 ), and ( G_3 ), respectively.
- We can expand ( G_3 ) by adding two vertices while maintaining the 3-regular property.
Check Tutte's Theorem:
- Odd Components After Removing ( v^* ):
- When ( v^* ) is removed, the remaining components are still ( G_1 ), ( G_2 ), and ( G_3 ).
- Each subgraph still contains an odd number of vertices, so the number of odd components remains 3.
- Set ( S = {v^*} ):
- After removing ( S ), we have:
$$
o(G-S) = 3 \quad \text{and} \quad |S| = 1.
$$ - This violates the condition ( o(G-S) \leq |S| ) required by Tutte's theorem.
- After removing ( S ), we have:
Conclusion:
Thus, the 3-regular simple graphs constructed in this way for even ( n \geq 16 ) do not have a 1-factor.
728x90
반응형