728x90
반응형
문제출처
광주과학기술원 GIST 최정옥 교수님의 “그래프 이론” 수업, 2024년 가을학기 중 Homework 7
Solution
1. If the graph is initially disconnected, \kappa'(G) = 0 . Thus, \kappa(G) = \kappa'(G) = 0. Therefore, we will only consider connected graphs.
2. For , n = 1 :
- \kappa(G) = \kappa'(G) = 0 is trivial.
3. For , n = 2 :
- The path graph ,P_2 is the only connected graph, and \kappa(G) = \kappa'(G) = 1 is trivial.
4. For , n = 3 :
- The triangle graph C_3 is the only connected graph, and \kappa(G) = \kappa'(G) = 2 is trivial.
5. For , n = 4:
- There are two cases:
- The cycle C_4:
\kappa(G) = \kappa'(G) = 2 is trivial. - A graph where a C_3 and a P_2 share one vertex \(denoted as Assemble\(C_3, P_2 \)\):
- \kappa(G) = 1 by choosing the common vertex.
- \kappa'(G) = 1 by choosing the edge of P_2 that is incident to the common vertex.
- The cycle C_4:
6. There is no n -vertex graph such that \kappa'(G) > \kappa(G) for n \leq 4 .
7. For, n \geq 5 :
- Consider Assemble\( C_{n-2}, C_3 \), where C_{n-2} and C_3 share a common vertex:
- \kappa(G) = 1 by choosing the common vertex of C_{n-2} and C_3 .
- \kappa'(G) = 2 by choosing the edges of C_3 that are incident to the common vertex.
- Thus, \kappa'(G) > \kappa(G).
이 경우, n=1,2,3,4에 대해선 존재하지 않는다. 이를 증명하기 위해선 n에 대한 모든 가능한 그래프를 그리고, 조건에 만족하지 않음을 보여야한다. 이후 n>4에 대해서 특정 형태의 그래프가 항상 가능함을 보이고, 그 형태의 그래프에선 조건이 만족됨을 보였다. 필자의 경우엔 C_3와 C_{n-2}가 한점을 공유해 만들어지는 그래프를 구성했다.
728x90
반응형