문제출처
광주과학기술원 GIST 최정옥 교수님의 “그래프 이론” 수업, 2024년 가을학기 중 Homework 7
아래를 참고해서 작성한 풀이인데, 풀이가 조금 찝찝하다. 조교는 한두장 분량의 원래 매우 긴 풀이를 기대했다고 한다. 다른 괜찮은 풀이를 생각해보는게 좋겠다.
https://seongqjini.com/%EA%B7%B8%EB%9E%98%ED%94%84%EC%9D%B4%EB%A1%A0-graph-theory-%EB%AC%B8%EC%A0%9C%ED%92%80%EC%9D%B4-prove-that-%CE%BAg-%CE%B4g-if-g-is-simple-and-%CE%B4g-%E2%89%A5-ng-%E2%88%92-2-prove-that/
Solution
1. Since \delta(G) \geq n(G) - 2 , we have two cases:
- \delta(G) = n(G) - 1 , or
- \delta(G) = n(G) - 2 .
2. If \delta(G) = n - 1 :
- G is a complete graph.
- Then \kappa(G) = n - 1 , and \kappa(G) = \delta(G) .
3. If \delta(G) = n - 2 :
3.1. Let u, v, w \in V(G) and \deg_G(w) \geq n - 2 .
- From the assumption, w must be adjacent to either u or v .
3.2. Suppose w is adjacent to u :
- If u is adjacent to v , then there exists a uv -path in G - w .
- If u is not adjacent to v , since \delta(G) = n - 2 , u and v have the same neighbors.
Thus, there exists a uv -path in G - w . - Since G - w is connected, \kappa(G) \geq n - 2 .
3.3. Let V(G) = {v_1, v_2, \dots, v_n} , \deg_G(v_1) = \delta(G) , and N_G(v_1) = {v_2, \dots, v_{n-1}} .
- Construct G_i by deleting one vertex at a time:
- G_0 = G .
- G_1 = G_0 - v_2 .
- G_2 = G_1 - v_3 .
- Continue deleting vertices until G_{n-3} .
- G_{n-3} has only 3 vertices and \delta(G_{n-3}) = n - 2 - (n - 3) = 1 .
- Thus, G_{n-3} is a path graph, and \kappa(G_{n-3}) = 1 .
- Therefore, \kappa(G) = \delta(G) .
4. To prove this is the best possible for each n \geq 4 , construct a simple n -vertex graph with \delta(G) = n - 3 and \kappa(G) < n - 3 :
4.1. Let graphs G_1 = K_2 , G_2 = K_2 , and G_3 = K_{n-4} , all disjoint.
- Construct the graph G by adding edges between every vertex in G_1 , G_2 , and G_3 .
- Then \kappa(G) = n - 4 and \delta(G) = n - 3 .