분류 전체보기
Let ei(G) denote the number of vertices of G whose degree is strictly greater than i. Use the greedy algorithm to show that if ei(G)≤i+1 for some i, then χ(G)≤i+1. Find an example H that satisfies e4(H)≤5 and compute χ(H)
문제출처광주과학기술원 GIST 최정옥 교수님의 “그래프 이론” 수업, 2024년 가을학기 중 Homework 9Solution1. Decide the order of all vertices.2. First, place all the vertices with degG(v)>i. Next, place the remaining vertices.3. By the given definition of ei(G), the number of vertices with degG(v)>i is ei(G).By the given assumption, ei(G)≤i+1.Thus, ei(G) is at most i+1.4. Apply the Greedy Coloring algo..
For every graph G, show that there is an ordering of the vertices of G such that the numberof required colors from Greedy Algorithm is exactly χ(G). (You should describe how togive such an order.)
문제출처광주과학기술원 GIST 최정옥 교수님의 “그래프 이론” 수업, 2024년 가을학기 중 Homework 9Solution1. Assume that the graph G can be properly colored with exactly χ(G) colors. Remember that each color class forms an independent set. 2. Using this proper coloring, define the vertex order as follows: a. List all vertices in the color class corresponding to color 1. b. Next, list all vertices in the color class co..
Choose two graphs and determine the chromatic numbers of them. Give your explanationfor each case.
Solution1. Figure (a)The graph in Figure (a) includes the subgraph C5 (observe the outer 5 vertices).If the graph is 2-colorable, it must have an even number of vertices. However, C5 has an odd number of vertices (5).Thus, χ(C5)≥3.Below is Figure (a):I marked the graph with 3 proper colors (1, 2, 3). It is 3-colorable.Therefore, χ(graph (a))=3.2. Figure (b)The ..
Use Menger’s Theorem to prove that κ(G) = κ′(G) for every 3-regular graph G.
문제출처광주과학기술원 GIST 최정옥 교수님의 “그래프 이론” 수업, 2024년 가을학기 중 Homework 8Solution1. Since G is a 3-regular graph, δ(G)=3. Thus, κ(G)≤κ′(G)≤δ(G)=3.2. Consider κ(G)=0:If G is disconnected, κ′(G)=0.Thus, κ(G)=κ′(G)=0.3. Consider κ(G)=1:Let the vertex cut S=v1.There are two components C1 and C2 in G∖S...
Use Menger’s Theorem (κ(x, y) = λ(x, y) when xy ∉ E(G)) to prove that α′(G)=β(G) when G is bipartite.
문제출처광주과학기술원 GIST 최정옥 교수님의 “그래프 이론” 수업, 2024년 가을학기 중 Homework 8Solution1. Suppose G is a bipartite graph. We can divide G into two independent and disjoint vertex sets X and Y. 2. For x∈X and y∈Y, add an edge x,y to G and let this new graph be G′. 3. In G′, consider: λG′(x,y): the maximum number of internally disjoint x,y-paths, and $\kappa_{G'}(x..
Let G be a simple graph of even order n having a set S of size k such that o(G-S) > k. Prove that G has at most \binom{k}{2} + k(n-k) + \binom{n-2k-1}{2} edges, and that this bound is best possible. Use this to determine the maximum size of a simple n
문제출처광주과학기술원 GIST 최정옥 교수님의 “그래프 이론” 수업, 2024년 가을학기 중 Homework 7Solution1. The total number of edges in G can be expressed as: |E(G)| = e(G[S]) + |[S, \bar{S}]| + e(G[\bar{S}]), where e(G[S]) is the number of edges within S, |[S, \bar{S}]| is the number of edges between S and \bar{S}, and e(G[\bar{S}]) is the number of edges within \bar{S}. 2. Since the size of S i..
Prove or disprove: If G is a 3-regular graph with at most two cut-edges, then G has a 1-factor.
문제출처광주과학기술원 GIST 최정옥 교수님의 “그래프 이론” 수업, 2024년 가을학기 중 Homework 8ProblemProve or disprove: If G is a 3-regular graph with at most two cut-edges, then ( G ) has a 1-factor.Solution1. We will use Tutte's theorem and Proposition 4.1.12: If S is a set of vertices in a graph G, then: |[S, \bar{S}]| = \sum\limits_{v \in S} d(v) - 2e(G[S]), where |[S, \bar{S}]| represents the numbe..
Prove or disprove: (a) every graph with connectivity 4 is 2-connected. (b) every k-connected graph is k-edge-connected.
문제출처광주과학기술원 GIST 최정옥 교수님의 “그래프 이론” 수업, 2024년 가을학기 중 Homework 8Solution(a) Every graph with connectivity 4 is 2-connected.For Connectivity 4 graph, we need to delete at least 4 vertex to disconnect the graph. And for 2-connected graph, If we delete one vertex it still remain connected. By the definition of connectivity and k-connected, It is true.(b) Every k-connected graph is k-edge-connected...
AWS 서버비용절감 계획 및 기록 (3) - AWS CLI 사용하기
AWS CLI가 필요해져서 설정 방법을 기록해두려한다. 1. 설치curl "https://awscli.amazonaws.com/AWSCLIV2.pkg" -o "AWSCLIV2.pkg"sudo installer -pkg AWSCLIV2.pkg -target /aws --version # 설치확인 2. AWS CLI 인증설정aws configure인증정보구성을 위한 명령이며, 4가지가 요구된다.Access Key ID: AWS 계정의 Access Key ID.Secret Access Key: AWS 계정의 Secret Key.Default region: AWS 리전 (나는 서울리전에 해당하는 ap-northeast-2을 이용했다)Default output format: 기본적으로 json 사용. 3. Acc..
AWS 서버비용절감 계획 및 기록 (2) - AWS S3, CloudFront
1. 구조 변화계속 EC2를 사용해왔기에 Lamda의 구조가 잘 그려지지 않는다. 원래의 구조와 비교하여 생각해보려한다. 1) 기존구조: React + DRF + Docker Swarm on EC2React: 앱을 정적파일로 빌드하고 Nginx 컨테이너로 제공함.DRF로 API 제공. /api 엔드포인트로 통일시켜둬서 이걸로 구분하고 Nginx를 이용해 서빙함.Docker Swarm: EC2에서 컨테이너 오케스트레이션 및 확장성을 관리함. 2) Lambda로 전환 이후: Lambda는 서버리스 기반이다.React는 정적파일로 빌드하고 S3와 CloudFront를 사용해서 배포한다. CloudFront는 CDN으로 사용자에게 빠르게 전달.DRF를 Lambda 함수로 분리해서 서버리스로 전환 2. Front..