분류 전체보기
Prufer code에 대하여
u는 독일어 움라우트 표기해야한다.prufer code는 트리구조를 인코딩하는 방법으로 n개 정점을 가진 트리를 n-2개 정수로 표현한다.트리로부터 프뤼퍼코드를 생성하거나 프뤼버코드로부터 트리를 생성하는 예제는 2024 그래프이론 퀴즈와 중간고사 모두에서 출제되었으므로 후배님들은 확인해보길바란다. 그냥 공부했던 내용을 기록하기 위해 붙여둔다.
Show konig thm implies Hall’s thm
교수님께서 몇번 강조를 하셔서 증명은 해봤는데, 2024 기준 시험이나 퀴즈에 출제된 바는 없습니다. SolutionHall's Theorem:For a bipartite graph G=(X,Y,E), a perfect matching exists if and only if the following condition holds:∀S⊆X,|N(S)|≥|S|. We need to show that α′(G)=β(G) for every bipartite G implies Hall's theorem. Proof: Suppose the graph G satisfies the condition of Hall's theor..
For all positive integers r and d that satisfy r ≤ d ≤ 2r, construct a simple graphwith radius r and diameter d.
문제출처광주과학기술원 GIST 최정옥 교수님의 “그래프 이론” 수업, 2024년 가을학기 중 Homework 5 Solution(c) Construct a simple graph with radius r and diameter dConstruction: Consider the cycle C2r defined on V=0,1,2,…,2r−1. In this case, we have:rad(C2r)=r. When d=r, the graph satisfies:diam(C2r)=rad(C2r)=r. Now assume 2r≥d>r. Define a path $..
Use part (a) to prove that diam(G) ≤ 2rad(G) for every graph G.
문제출처광주과학기술원 GIST 최정옥 교수님의 “그래프 이론” 수업, 2024년 가을학기 중 Homework 5풀이(a)는 삼각부등식. 이전 풀이 참고.Proof: If there is no path a…b or path b…c, then d(a,b) or d(b,c)=∞, so the inequality is trivially satisfied. Otherwise, there exists a path a…b of length d(a,b) and a path b…c of length d(b,c). We may compose these two paths to form a longer walk $a \dots b ..
(a) Prove that the distance function d(u,v) on a pair of vertices of a graph satisfies the triangle inequality: d(u,v)+d(v,w)≥d(u,w).
문제출처광주과학기술원 GIST 최정옥 교수님의 “그래프 이론” 수업, 2024년 가을학기 중 Homework 5풀이1. The distance d(u,v) between two vertices u and v is the length of the shortest path connecting u and v. 2. Suppose d(u,v)+d(v,w)Bydefinition,d(u, v)isthelengthoftheshortestpathfromutov,andd(v, w)isthelengthoftheshortestpathfromvtow.However,d(u, w)$ is the length of the s..
Let T and T′ be two spanning trees of a connected graph G. For e∈E(T)−E(T′), prove that there is an edge e′∈E(T′)−E(T) such that T′+e−e′ and T−e+e′ are both spanning trees of G.
문제출처광주과학기술원 GIST 최정옥 교수님의 “그래프 이론” 수업, 2024년 가을학기 중 Homework 5Solution1. Consider an edge e∈E(T)−E(T′). Since e is not in T′, adding e to T′ results in the graph T′+e.Because T′ is a spanning tree, it already spans all vertices of G.This means there is a path in T′ between any two vertices. Adding e, which is incident to two vertices already connected by a path in $T'..
Let F be a maximal forest of G. Show that: e(F)=n(G)−c(G), where e, n, and c are the number of edges, vertices, and compo-nents, respectively.
문제출처광주과학기술원 GIST 최정옥 교수님의 “그래프 이론” 수업, 2024년 가을학기 중 Homework 5Solution1. G has c(G) components. Each component H of G is connected and contains a spanning tree F∩H, as shown in part (a).2. A spanning tree with k vertices has exactly k−1 edges, since a tree with k vertices has k−1 edges by definition.3. Therefore, for each component H, if H has n(H) vertices, the span..
Let F be a maximal forest of G. Show that: (a) For every component H of G, F ∩ H is a spanning tree of H
문제출처광주과학기술원 GIST 최정옥 교수님의 “그래프 이론” 수업, 2024년 가을학기 중 Homework 5 Solution1. A component H of G is a connected subgraph of G. Thus, H is connected by definition. F is a maximal forest of G, meaning that F is an acyclic subgraph of G and spans all components of G. 2. Since F is a forest, it contains no cycles. Thus, F∩H, as a subgraph of F, must also be acyclic. 3. $F..
What is the minumum number of cycles in graphs with n vertices and m edges?
문제출처광주과학기술원 GIST 최정옥 교수님의 “그래프 이론” 수업, 2024년 가을학기 중 Homework 5Solution1. Suppose that there is a graph with n vertices and no edges. 2. As we add edges to the graph, we need to determine whether each new edge creates a cycle. A cycle is formed when there is already a path between the two vertices before the edge is added. 3. At the beginning, there are n disconnected vertices. By adding $n..
Let T be a nontrivial tree. Determine the minimum possible number of maximal indepen-dent sets in T . Determine all the possible structure of T achieving the minimum number.
문제출처광주과학기술원 GIST 최정옥 교수님의 “그래프 이론” 수업, 2024년 가을학기 중 Homework 5 Solution1. In a tree, there are leaf vertices and non-leaf vertices. If we take a maximal independent set that includes a leaf vertex, we can also construct a different maximal independent set that excludes that leaf and includes its neighbor instead. 2. Thus, there are always at least two distinct maximal independent sets in any t..